

Implantable polymeric scaffolds for neural repair

Laura Calzà & Maria Letizia Focarete Health Sciences and Technologies—Interdepartmental Center for Industrial Research (HST-ICIR), University of Bologna, Bologna, Italy

Technopoles

Activities of the

Health Sciences and Technologies— Interdepartmental Center for Industrial Research of the University of Bologna related to regenerative medicine and tissue engineering

THE MATERIAL SIDE

Polymer Science Group Functional polymeric biomaterials

THE PRECLINICAL SIDE

JRL CIRI-SDV&IRET Foundation In vitro and in vivo testing Safety also according to GLP Efficacy in disease models

Implantable polymeric scaffolds for neural repair: The material side

Maria Letizia Focarete Marialetizia.focarete@unibo.it

Introduction

THE MATERIAL SIDE

According to a specific task we are able to develop the **more suitable polymeric system**, on the basis of the required properties

Electrospinning technology

- Pore size from a few µm to tens of

Randomly arranged fibers

μm

Electrospinning technology

Functional polymeric materials

Drug delivery

3D microenvironment to mimik different tissues

- To study cell faith mimiking different pathologies
- To perform cell culture for cell transplant

 Tuning the material properties is possible to obtain the desired release kinetics of one/multi drug systems Bioactive Scaffolds (bioconjugation)

Create link between the selected material and antibodies/peptides/ growth factors

New polymeric systems for bioinspired scaffolds

Tailoring chemical and physical properties of fibrous scaffolds from block copolyesters containing ether and thio-ether linkages for skeletal differentiation of human mesenchymal stromal cells

Honglin Chen ^{a, 1}, Matteo Gigli ^{b, 1}, Chiara Gualandi ^c, Roman Truckenmüller ^a, Clemens van Blitterswijk ^a, Nadia Lotti ^b, Andrea Munari ^b, Maria Letizia Focarete ^{c, d, **}, Lorenzo Moroni ^{a, *}

Shape memory meshes

PCL-based through Sol-Gel Electrospinning

Hydrogel-fiber 3D composite system for multipotent stem cell culture

Poly-L-Lactic Acid Nanofiber–Polyamidoamine Hydrogel Composites: Preparation, Properties, and Preliminary Evaluation as Scaffolds for Human Pluripotent Stem Cell Culturing

ora Bloise, Nicolò Mauro, Paolo Ferruti, Amedea Manfredi, 3i, Anna Liguori, Romolo Laurita, Matteo Gherardi, ivia Visai, Maria Letizia Focarete,* Elisabetta Ranucci*

Macromol. Biosci. 2016, 16, 1533-1544

Bioinspired 3D matrices: Tendon substitutes

"Step-by--step: integrated approach for the patient with acute neurologic lesions" Prof. Laura Calzà

Controlled in situ release of luminescent nanoparticles

Implantable polymeric scaffolds for neural repair: In vitro testing for safety and efficacy. The preclinical side.

Laura Calzà Laura.calza@unibo.it

"Implantable" polymeric scaffolds

FDA U.S. FOOD & DRUG

Εŀ

"implantable scaffolds":

How to keep close PoC efficacy studies and FDA compliant safety tests

Translational research

ADMINISTRATION

CNS repair: a challenge for material science

3D mimicking Self-healing Drug delivery devices Cell-scaffolds devices

Neurobiology and translational point of view

Italian REGENERATIVE MEDICINE Infrastructure

In vitro testing of biomaterials

Electrospun artificial polymers

Flexible, permeable, implantable biological reservoirs

IRMI, technological cluster ALISEI (MIUR) scaffolds for selfhealing improvement in the CNS

Step-by-Step, POR-FESR (RER) scaffolds for localized drug delivery in the CNS

Toward clinical application: how we design a translational study: *in vitro experiments*

Primary end-points	Toxicity efficacy	materials	Glass Plastic	
Readout	cell viability neurite elongation	topography	PLLA 2D	
Statistical power:	conventional vs high- troughput technologies		Random semi 3D Aligned semi 3D	
Regulatory:	GLP/ISO compliance	Chemical functionalization	No-coating Lamin ECM extract	
		Cell type	SY5Y cell line Primary neurons Neural stem cells	

a

2

	description	PRO	CONTRA	
SY5Y (and other cell lines)	neuroblastoma cell line derived from human tissue	 can be easily differentiated toward a neuronal-like cell widely available easy-to-handle highly reproducible system Human Maturation in 7DIV 	 Tumor cells The sensitivity to a wide range of toxic stimuli is lower compared to primary neurons neurite outgrowth may be different from that occurring in primary neurons 	
Primary neurons	From fetal and neonatal brain	 physiologically significant Low possibility of false positives and negatives Maturation in 15/21DIV 	 Animal (and human) require selective skills for handling and result interpretation mixed 	
NSCs	From fetal, neonatal and adult brain	 physiologically significant Low possibility of false positives and negatives Maturation in 15DIV (lineage) Mixed cell composition 	 Animal (and human) require selective skills for handling and result interpretation Mixed cell composition 	

Toxicity:

- Cell adhesion
- Mitochondria membrane potential
- Nuclear morphology
- LDH

Efficacy:

Neurite elongation

Statistical design:

- 6 technical replicates
- 3 biological replicates

Statistical design:experimental variables:

- Material topography
- Material chemical functionalization
- Neural cell type

Cell-based high content screening

coefficient of variation:
2D cultrex coated,
semi-3D aligned uncoated,MTT = 17.62%
MTT = 32.86%HCS = 22.35%;
HCS = 3.90%)

Baldassarro et al., Microchem J, 2017 in press

Ex 1: RESC

2D, semi3D systems:

A: SEM micrograph of PLLA electrospun scaffold

B: RESC cells on es-PLLA scaffold; actin, red, nuclear Hoechst 33258blue C: 3D Oct4-IR RESCs (green

actin immunostaining (green)

F: 3D-BME G: glass H: es-PLLA

material	functionalization	Cellular test system
chemistry	Physical	Proliferation/viability
topography	chemical	differentiation
2D vs 3D	pharmacological	Biological properties

Alessandri et al., Matrix Biol, 2014

Ex 1: RESC, proliferation & viability

Proliferation and viability assays of RESCs cultured on different 2D and 3D surfaces

BME: Basement Membrane Extract es-PLLA: submicrometric elctrospun fibres

Hoechst33258 caspase3

 \approx

< E

Ex 1: RESC, differentiation

Oct4 expression in RESCs cultured on different surfaces.

A: Real-time PCR analysis of Oct4 mRNA expression in RESCs grown on 3D-BME, plastic, BME-coated plastic, es-PLLA scaffold, BME-coated es-PLLA scaffold at two different time points (3 and 15 DIV)

Alessandri et al., Matrix Biol, 2014

Ex 1: RESC, differentiation

"the fourth state of matter": Heating a gas may ionize its molecules or atoms (reducing or increasing the number of electrons in them), thus turning it into a plasma, which contains charged particles: positive ions and negative electrons or ions

Dolci et al., Plasma Process. Polym, 2013

Ex 2: Plasma treatment of polymers

Sample	Time after plasma treatment [h]	WCA [°]
ES-PLLA-untreated		121.5 ± 1.7
ES-PLLA-LC	3	a)
	24	a)
	48	a)
PLLA-film-untreated	<u> 21</u>	90.3 ± 5.8
PLLA-film-LC	3	46.4 ± 3.9
	24	48.6 ± 3.4
	48	45.8 ± 4.0

^{a)}Instantaneous water penetration.

Table 1. Thermal and m	nechanical	properties of ES-I	PLLA-untre	eated and ES-	PLLA-LC s	<u>caffolds^{Q4}</u> .			
Sample	Т _g [°С]	$\frac{\Delta C_{p}}{[J g^{-1} \circ C^{-1}]}$	<i>Т</i> _с [°С]	ΔH_{c} [Jg ⁻¹]	<i>Т</i> _т [°С]	$\Delta H_{\rm m}$ [Jg ⁻¹]	σ _b ^{a)} [MPa]	_{ёь} ь) [%]	E ^{c)} [MPa]
ES-PLLA-untreated	65	0.73	126	40	163	41	3.4 ± 0.5	56 ± 5	86 ± 13
ES-PLLA-LC	64	0.75	126	39	162	40	2.3 ± 0.3	71 ± 9	64 ± 8

^{a)}Elongation at break; ^{b)}Tensile modulus; ^{c)}Tensile strength.

ST

Dolci et al., Plasma Process. Polym, 2013

Dolci et al., Plasma Process. Polym, 2013

Ex 3: Efficacy, neurite elongation

B. SH-SY5Y

C. Primary cortical neurons

Baldassarro et al., Biores Open Access. 2016

Ex 3: Efficacy, lineage

Ex 3: Efficacy, safety/toxicology

Baldassarro et al., Biores Open Access. 2016

TISSUE ENGINEERING Volume 11, Number 9/10, 2005 © Mary Ann Liebert, Inc.

Editorial

Standardized Experimental Procedures in Tissue Engineering: Cure or Curse? Chemical selection Material design Biomaterial functionalization Cell selection Test readout Test robustness

ward. What has not occurred, however, is the adoption of these, or indeed any, standards by academic researchers in the field. As a result, it remains very difficult to compare published data, since each laboratory uses its own experimental approach. I do not suggest that creative new experimental systems are not valuable, but simply that without all laboratories using a set of minimum standards as part of their comprehensive strategy the field will suffer.

> Use of International Standard ISO-10993, "Biological Evaluation of Medical Devices Part 1: Evaluation and Testing"

Freedman et al., PlosBiol, 2015

Ready to work together for research programs, collaboration with companies, third party research

Topics:

- ✓ scaffold fabrication (natural and synthetic polymers) and bioconjugation
- \checkmark shape memory polymers and functional polymeric materials
- ✓ in vitro testing using neural cell lines, primary neurons and glial cells, neural stem cells, embryonic stem cells
- *in vivo* testing in rodent models for multiple sclerosis, neonatal hypoxia-ischemia, traumatic spinal cord injury, Alzheimer's disease

✓ - GLP and ISO service for *in vitro* and *in vivo* safety

	1275	
	1446	
i anda a	INIONE EUROPEA	ninnala

CONTACTS:

Prof. Laura Calzà CIRI-SDV and Fabit, University of Bologna IRET Foundation phone: +39 051 798776 mail: laura.calza@unibo.it

Prof. Maria Letizia Focarete University of Bologna - Department of Chemistry "G. Ciamician" Via Selmi 2 - 40126 Bologna - Italy Ph: +39-051-2099572 Email: marialetizia.focarete@unibo.it