

# EL PARTNER TECNOLÓGICO

# Polymeric Nanocapsules as tools to face challenges in Regenerative Medicine

ETPN RegMed WG 23rd August 2016

Gemma Vilar Palos (<u>gvilar@leitat.org</u>) Lorena García Fernández (<u>logarcia@leitat.org</u>)



#### About us

**Leitat** is the brand of the institution **Acondicionamiento Tarrasense**, a private and non-profit **Organisation**. It is recognised by the Catalan Government (TECNIO) and by the Spanish Ministry of Science and Innovation.

Since 1906



We develop and bank on development, expanding activities towards the knowledge generation and its transfer to the productive fabric.



#### **MISSION**

Create and transfer economic, social and sustainable value to companies and entities, through research and technology processes.

#### VISION

Be a Technology Partner to companies and Administration, by generating a corporate culture allowing sustained growth and efficient functioning.

### **CORPORATE CULTURE**

#### **PRINCIPLES:**

We believe in

- Creativity
- Innovation
- Sustainability
- Environmental Awareness
- Diversity
- Efficiency
- Efficacy

#### VALUES:

#### We act with

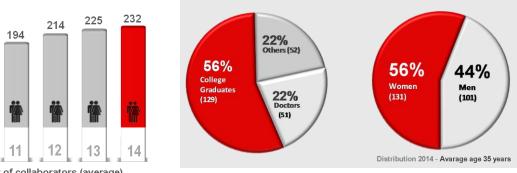
- •Dynamism
- Independency
- Commitment
- Confidentiality
- Market-orientation
- Global perspective
- Talent





#### Who we target?



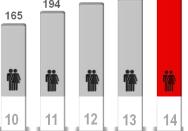





#### **Results**








## Figures 2014

**265** Proposals managed 137 R+D+2i projects being executed\* 4 Lead projects 240 Private R+D+2i projects 2.915 Advanced technology solutions **2** Patents

\*We participate in European projects with 839 partners, overall budget of 432M € and collaborating with 28 countries

> + Corporate Social Responsibility 4



Number of collaborators (average)

Our customers' value: Quality, personal contact, clarity of results Society value: Innovation, sustainability and environmental responsibility, market orientation Level of loyalty (future collaboration and recommendation) > 97%



**LEITAT NMP Results – 2014-15** 

# 58 M€ secured (2014-2015)

EUROPE RTO Top list - 2014

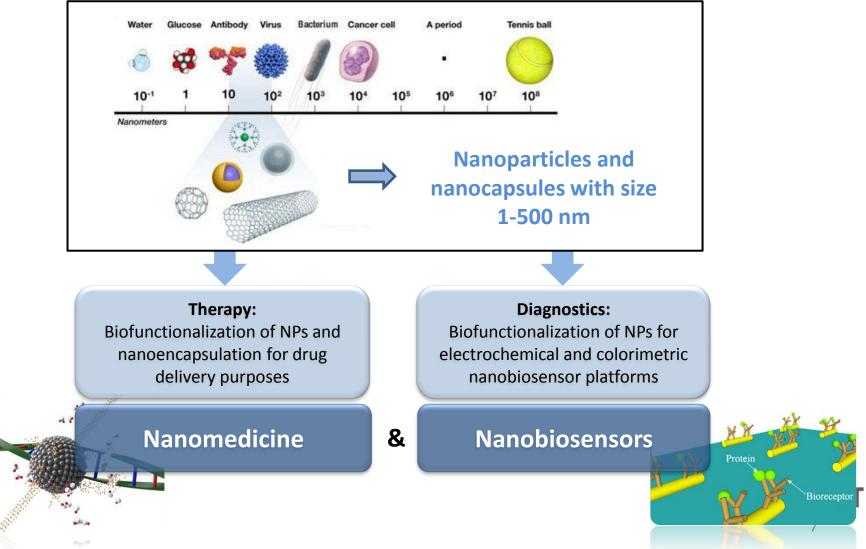
| CEA        | 15 | 10.043.683,75€ |
|------------|----|----------------|
| Fraunhofer | 14 | 8.733.357,25€  |
| TECNALIA   | 7  | 4.698.132,50€  |
| LEITAT     | 7  | 4.518.352,75€  |
| CNRS       | 8  | 4.398.264,25€  |
| CIDETEC    | 4  | 4.306.997,50€  |

### LEITAT: 1st as NMP coordinator



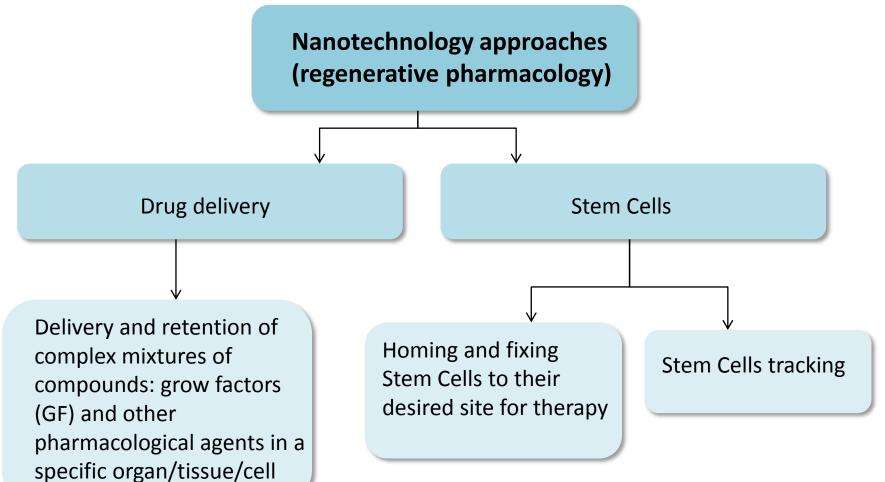
# EL PARTNER TECNOLÓGICO

# Human & Environmental Health & Safety


## Group Leader: Socorro Vázquez Campos

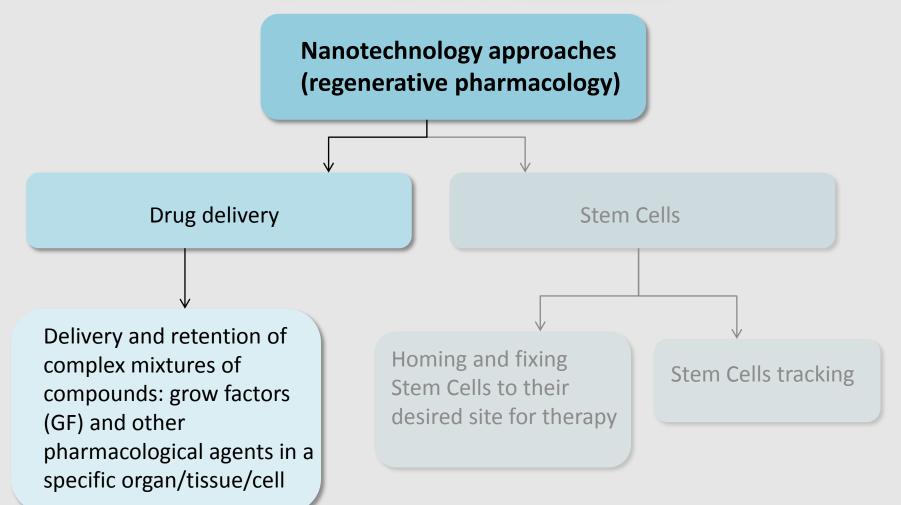
| Nanomedicine &<br>Nanobiosensors | Materials Safety         | Nanotoxicology &<br>Risk Assessment |
|----------------------------------|--------------------------|-------------------------------------|
| Efficacy & Safety                | In vitro kits production | Bioanalytics                        |




## Nanomed group

### Nanomedicine & Nanobiosensors group

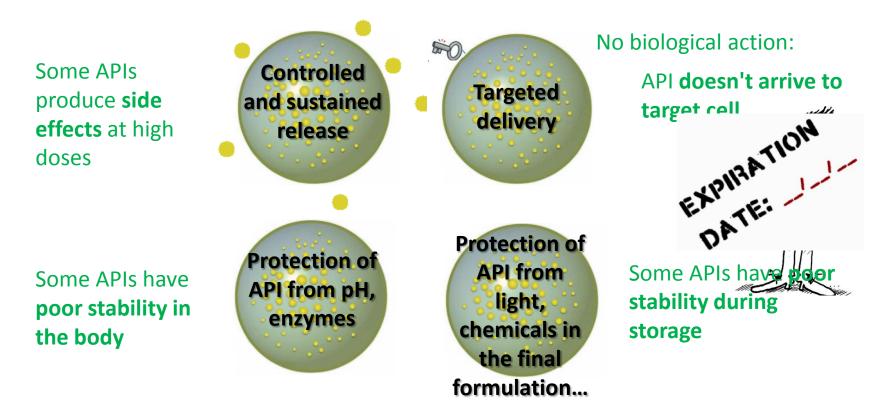





Regenerative Medicine



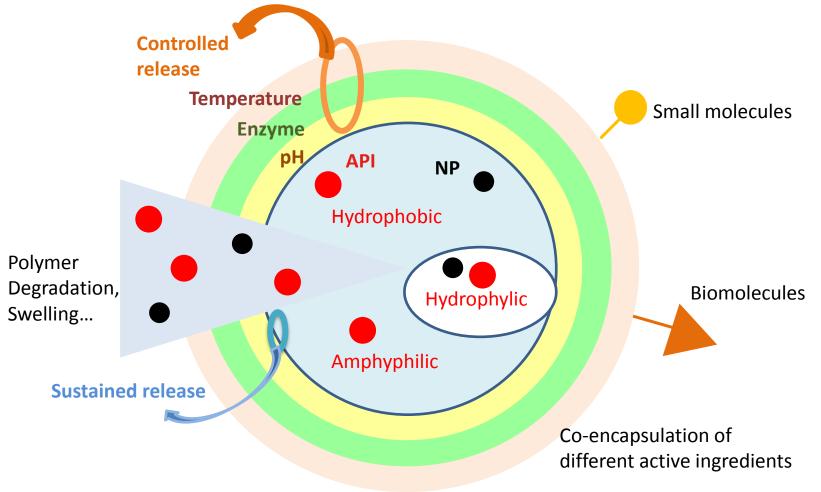



Regenerative Medicine








What offer nanoencapsulation in curative therapeutics?







## Nano Toolbox







## Systems for GF delivery

Table III. In vivo Investigations of NP Systems for Growth Factor Delivery for Tissue Induction or Regeneration

| Growth factor   | NP system                              | Regeneration             | Targeted     | Targeted tissue  | Ligand/tissue interaction                  | Reference |
|-----------------|----------------------------------------|--------------------------|--------------|------------------|--------------------------------------------|-----------|
| bFGF<br>(FGF-2) | PLGA                                   | Arteriogenesis           | Y (systemic) | Skeletal muscles | Ultrasound facilitated<br>NP deposition    | (45)      |
|                 | Gelatin NPs                            | Nerve                    | Ν            |                  |                                            | (120)     |
|                 | Peptide amphiphile                     | Angiogenesis             | Ν            |                  |                                            | (127)     |
|                 | Heparin-conjugated PLGA                | Angiogenesis             | Ν            |                  |                                            | (126)     |
|                 | Mannan modified<br>PCL-PEG-PCL         | Anti-cancer<br>effect    | Y (systemic) | Dendritic cells  | Mannan and lectin-like<br>receptors on DCs | (52)      |
| NGF             | PBCA NPs coated with<br>polysorbate-80 | Nerve                    | N            |                  |                                            | (54)      |
|                 | Streptavidin (strep-QDs)               | Nerve                    | Ν            |                  |                                            | (118)     |
|                 | DOPE-PEG-RMP-7 liposome                | Nerve                    | Y (systemic) | Brain            | RMP-7 and B2 receptor<br>on BBB            | (35)      |
|                 | P80 coated PBCA                        | Nerve                    | Y (systemic) | Brain            | P80-apolipoprotein E<br>and BBB            | (54)      |
| HGF             | DOPE-PEG-RGD liposome                  | anti-fibrotic<br>effect  | Y (systemic) | Liver            | Cyclic RGD and<br>hepatocytes              | (34)      |
| PDGF            | Calcium sulfate                        | Bone                     | Ν            |                  | I may see                                  | (81)      |
| BMP-2           | Heparin conjugated PLGA NPs            | Bone                     | Ν            |                  |                                            | (46, 110) |
|                 | PLGA/F-127 /heparin NPs                | Bone                     | Ν            |                  |                                            | (108)     |
|                 | Magnetic EPC liposomes                 | Bone                     | Y (local)    | Bone             | Magnetic induction                         | (31)      |
|                 | HA/collagen nanocomposite              | Bone                     | Ν            |                  | -                                          | (83)      |
|                 | PLGA/HA NPs composite                  | Bone                     | Ν            |                  |                                            | (102)     |
|                 | Peptide amphiphile                     | Bone                     | Ν            |                  |                                            | (103)     |
| EGF             | DPPC and LPC liposome                  | Teeth                    | Ν            |                  |                                            | (30)      |
|                 | PEG coated liposome                    | Gastric ulcer<br>healing | Ν            |                  |                                            | (29)      |
| BMP-7           | PLGA NPs                               | Bone                     | Ν            |                  |                                            | (44)      |
| TGF-β1          | Heparin/PEI NPs                        | Cartilage                | Ν            |                  |                                            | (109)     |
|                 | Magnetic EPC liposome                  | Cartilage                | Y (local)    | Bone             | Magnetic induction                         | (32)      |

Y Yes, N No

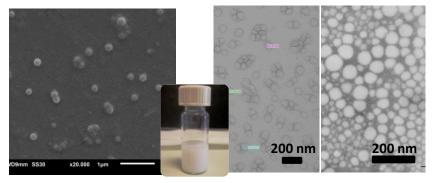
Sufeng Zhang and Hasan Uludağ. Nanoparticulate Systems for Growth Factor Delivery. Pharmaceutical Research, Vol. 26, No. 7, July 2009.

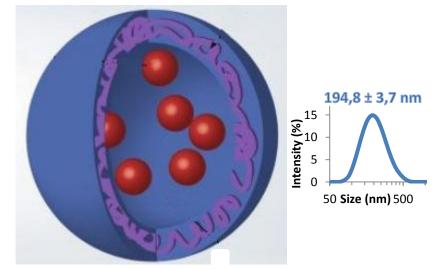




Table II. Summary of Studies on Targeted NP Systems for Growth Factor Delivery

| Growth factor | NP system                          | Route             | Study outcome                                                                                                                                                                                                                                                                                           | Reference |
|---------------|------------------------------------|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| bFGF (FGF-2)  | Mannan modified<br>PCL-PEG-PCL     | SC                | bFGF-specific autoantibody titer in mice<br>was significantly higher when bFGF was<br>delivered with mannan-bearing NPs.                                                                                                                                                                                | (52)      |
|               | PLGA                               | IV                | >80% enhancement in diameter of the<br>posterior collateral arterial vessel and an<br>~11-fold increase in flow capacity of this<br>vessel as compared to BSA NPs-treated control.                                                                                                                      | (45)      |
| NGF           | PBCA coated with<br>polysorbate-80 | IP                | Injection of PS-80 coated NGF-NPs showed<br>1.8~2.9-fold higher capacity in the restoration<br>of motor activity than the control (MPTP injected,<br>but no NPs) 7 days after injection. The motor activity<br>was completely restored till day 21 in the NPs treated<br>group, but not in the control. | (54)      |
|               | DOPE-PEG-RMP-7 liposome            | IV                | The targeting efficiency of RMP-7 guided liposome was ~2.1 times higher than the non-targeted liposomes.                                                                                                                                                                                                | (35)      |
| HGF           | DOPE-PEG-RGD liposome              | IP                | HGF encapsulated DOPE-PEG-RGD liposomes<br>stimulated the remission of liver cirrhosis to a<br>significantly higher extent than HGF in liposome<br>without RGD or HGF alone.                                                                                                                            | (34)      |
| BMP-2         | Magnetic EPC liposomes             | Topical injection | Magnetic liposomes with BMP-2 showed 1.5~1.7-fold<br>higher radiographic scores and bone formation areas<br>at the defect site than BMP-2 liposomes without<br>magnetite 9 weeks post-operation.                                                                                                        | (31)      |
| TGF-β1        | Magnetic EPC liposomes             | Topical injection | Abundant chondrocyte-like cells by histological analysis<br>and clear positive immunohistological staining around<br>the chondroncyte-like cells at the defect site 8 weeks<br>after treatment with magnetic liposomes containing<br>TGF-β1, but not in other groups.                                   | (32)      |


SC subcutaneous injection; IV intravascular injection; IP intraperitoneal injection; PCL poly( $\varepsilon$ -caprolactone); PEG polyethylene glycol; PLGA poly(DL-lactide-co-glycolide); PBCA poly(butylcyanoacrylate); MPTP a neurotoxin, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine; DOPE 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine; RMP-7 receptor mediated permeabilizer-7; RGD arginine-glycine-aspartate peptide; EPC egg phosphatidyl-choline

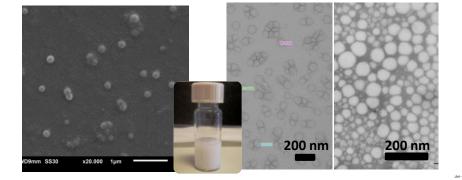





## **Sustained release**

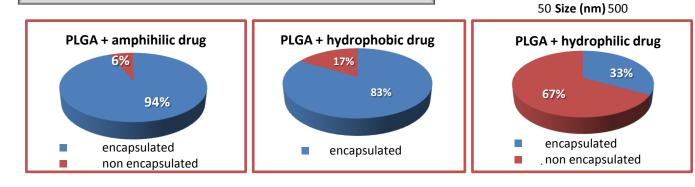
~ 150-200 nm

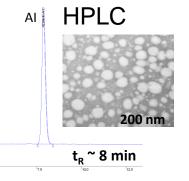










## **Sustained release**

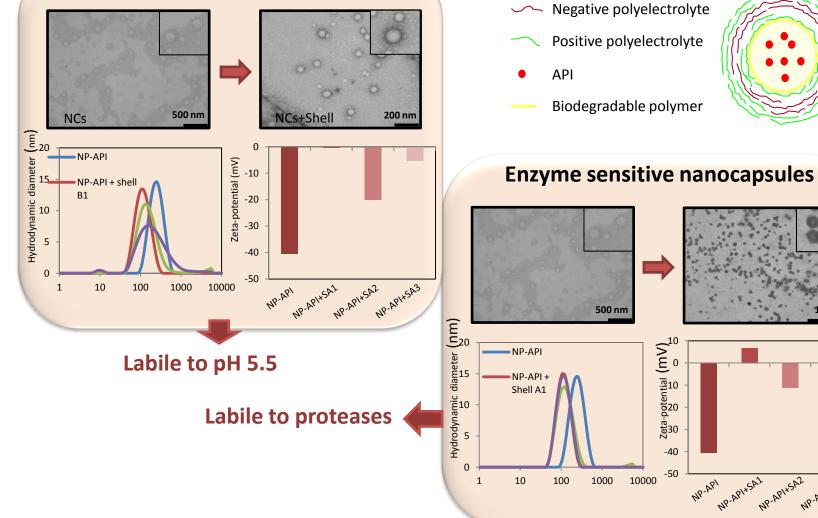


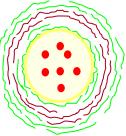


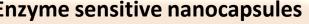

194,8 ± 3,7 nm

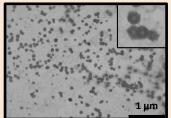






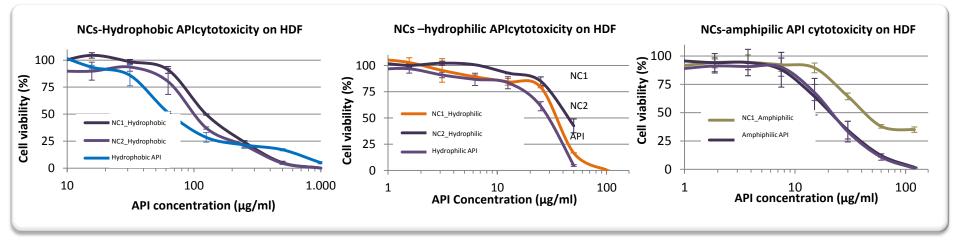


## **On switch** (smart systems) + sustained release

### pH sensitive nanocapsules





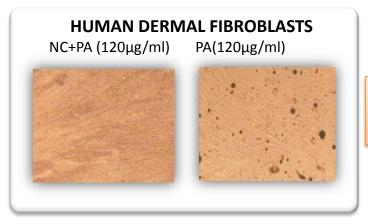




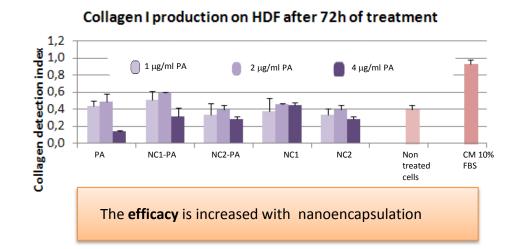

Eitət

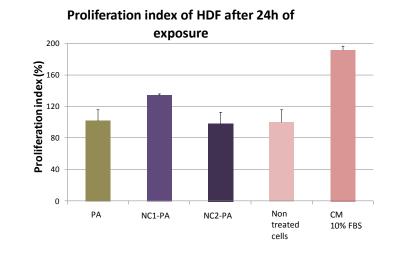
NP-API+SA3




## **Toxicity & Efficacy**

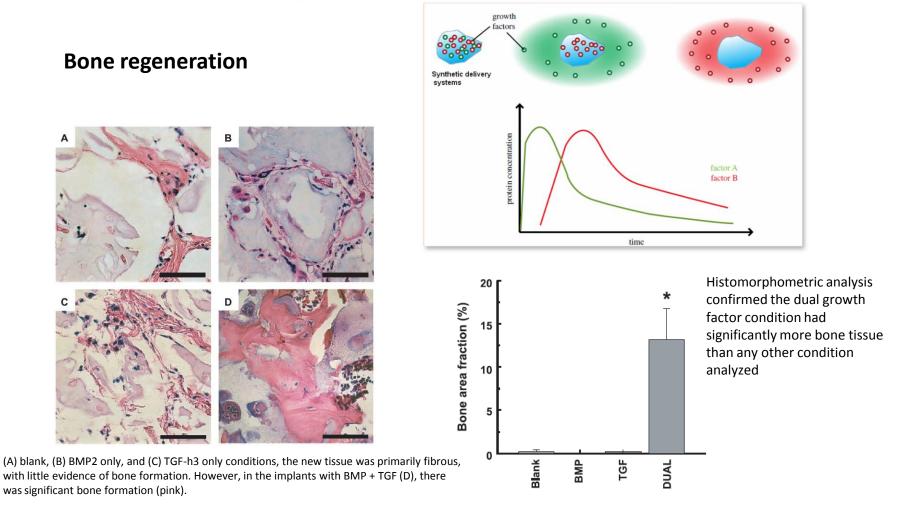



Encapsulated active is less toxic than free on human dermal fibroblasts (HDF)




## **Toxicity & Efficacy**




Nanoencapsulation offers **solubility and bioavailability** of Al







## Co-encapsulation. Synergic effect



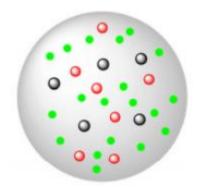
Craig A. Simmons, Eben Alsberg, Susan Hsiong, Woo J. Kim, and David J. Mooneya. Dual growth factor delivery and controlled scaffold degradation enhance in vivo bone formation by transplanted bone marrow stromal cells. Bone 35 (2004) 562–569



## Tendon and muscle tissue

GENERATION OF A NEW MODEL OF SKELETAL MUSCLE LESION IN RATS

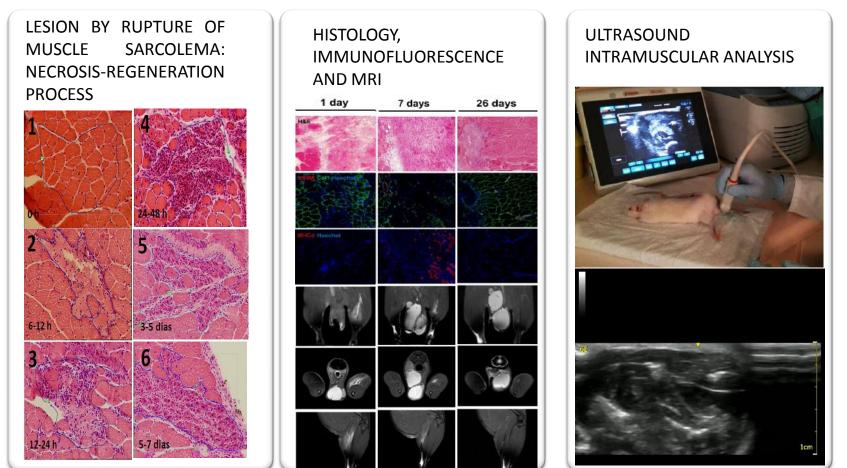



GENERATION OF A NEW MODEL OF ACHILLES TENDON INJURY IN RATS



**MuscleTech Network** 

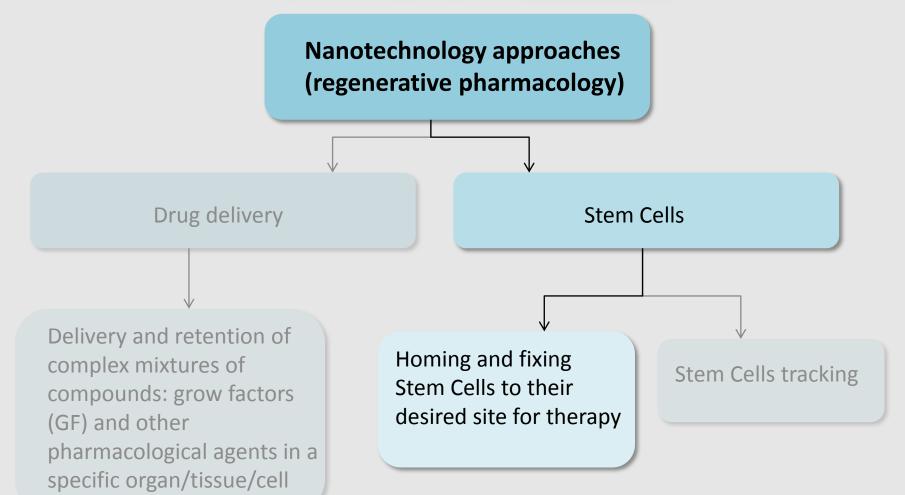
Most research network in muscle and tendon


#### Co-encapsulation growth factors → Synergic effect



http://muscletechnetwork.org




## Tendon and muscle tissue



http://muscletechnetwork.org



Regenerative Medicine





Pillar: Industrial Leadership

Work Programme Year: H2020-2016-2017 Work Programme Part: Innovation in SMEs Call : H2020-SMEInst-2016-2017 H2020 website

- Less

Call budget overview

#### **Topic Description**

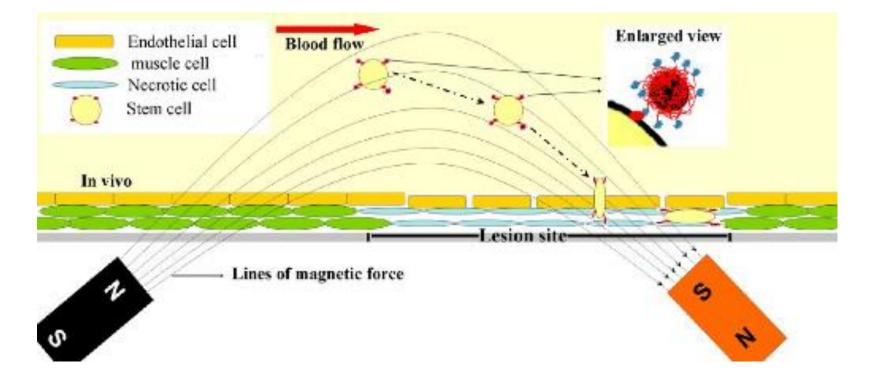
#### Specific Challenge:

The healthcare biotechnology sector offers huge business and commercial opportunities; however it also requires heavy and risky investments which are often lacking in Europe, hampering the development of the industry.

The challenge includes either:

 a) Cell technologies in medical applications (phase 1 only for 2016 deadlines and phase 2 for all deadlines in 2016 and 2017)

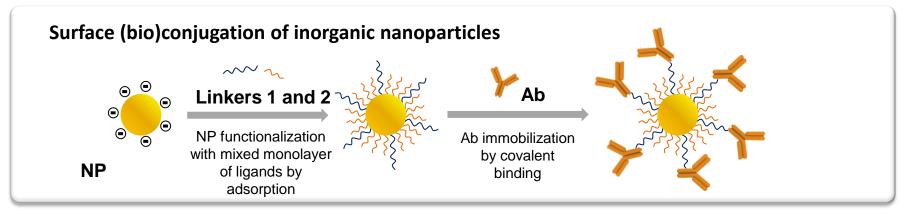
Cell technologies include cell manufacturing (culture, multiplication, scale-up and automation), preservation, banking and transport; identification, <u>cell sorting and delivery, imaging, tracking,</u> process and quality control; genetic engineering and gene editing; production of therapeutic biomolecules. The medical applications of cell technologies include diagnostics and biosensors; cell and gene therapy, tissue engineering, bio-artificial organs, haematology, immunotherapy, and <u>vaccine</u> and antibody production; predictive toxicology, synthetic biology, and modelling development and disease processes.


However, the diversity, complexity and variability of living cells pose challenges for bringing safe, reliable, regulatory-compliant and cost-effective products to the market and to the patient. SMEs developing cell-based products and processes have limited financial resources to take the critical steps to move from proof of concept to practical application while at the same time addressing considerations such as scale-up/scale-out, automation, logistics, regulatory pathways and business models.

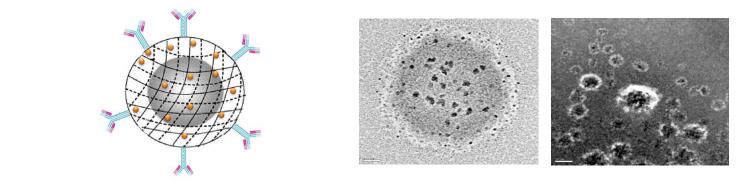
Particular attention should be given to dialogue with regulators and compliance with safety and regulatory requirements, such as those pertaining to cell procurement, GMP, ethics, clinical trials, ATMPs and medical devices.

The challenge addresses cells from any eukaryotic source though their eventual application must be to human medicine.




# Homing and fixing SC SMEInst




Chen, J.; Huang, N.; Ma, B.; Maitz, M.F.; Wang, J.; Li, J.; Li, Q.; Zhao, Y.; Xiong, K.; Liu, X. Guidance of stem cells to a target destination in vivo by magnetic nanoparticles in a magnetic field. ACS Appl. Mater. Interfaces 2013, 5, 5976-5985



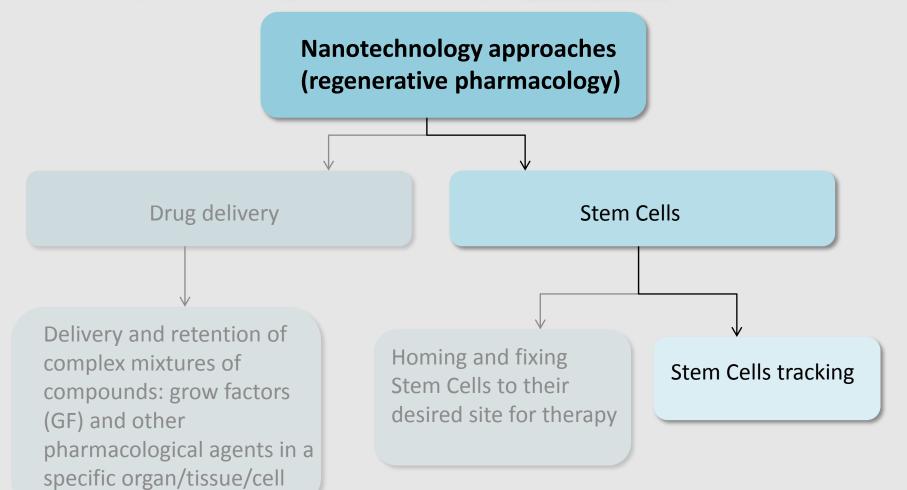
## Nanosystems



#### **Encapsulation of inorganic NPs in polymeric NPs**

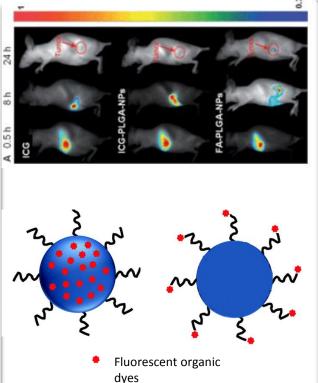




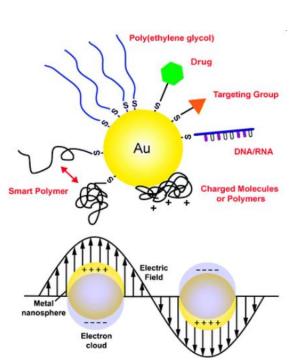



## **Topics of** interest

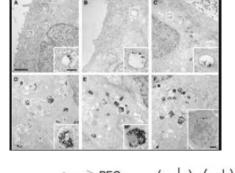
| Торіс                                                  | Title                                                                                                                                                     | Type of action |  |  |  |
|--------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--|--|--|
| 1.1 Understanding health, well-being and disease       |                                                                                                                                                           |                |  |  |  |
| PM 02 – 2017                                           | New concepts in patient stratification                                                                                                                    | RIA            |  |  |  |
| PM 03 – 2017                                           | Diagnostic characterisation of rare diseases                                                                                                              | RIA            |  |  |  |
| 1.3 Treating and managing                              | ng diseases                                                                                                                                               |                |  |  |  |
| PM 08 – 2017                                           | New the rapies for rare diseases                                                                                                                          | RIA            |  |  |  |
| PM 11 – 2016/2017                                      | Clinical research on regenerative medicine                                                                                                                | RIA            |  |  |  |
| 1.4 Active ageing and sel                              | 1.4 Active ageing and self-management of health                                                                                                           |                |  |  |  |
| PM 15 – 2017                                           | Personalised coaching for well-being and care of people as they age                                                                                       | RIA            |  |  |  |
| 1.5 Methods and data                                   |                                                                                                                                                           |                |  |  |  |
| PM 16 – 2017                                           | In-silico trials for developing and assessing biomedical products                                                                                         | RIA            |  |  |  |
| PM 17 – 2017                                           | Personalised computer models and in-silico systems for well-being                                                                                         | RIA            |  |  |  |
| ADVANCED MATERIALS AND NANOTECHNOLOGIES FOR HEALTHCARE |                                                                                                                                                           |                |  |  |  |
| NMBP-12-2017                                           | Development of a reliable methodology for better risk management of engineered biomaterials in Advanced Therapy Medicinal Products and/or Medical Devices | RIA            |  |  |  |
| NMBP-13-2017                                           | Cross-cutting KETs for diagnostics at the point-of-care                                                                                                   | RIA            |  |  |  |
| NMBP-14-2017                                           | Regulatory Science Framework for assessment of risk benefit ratio of Nanomedicines and Biomaterials                                                       | RIA            |  |  |  |
| NMBP-15-2017                                           | Nanotechnologies for imaging cellular transplants and regenerative processes in vivo                                                                      | RIA            |  |  |  |

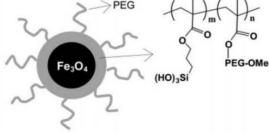



Regenerative Medicine







## **SC tracking**

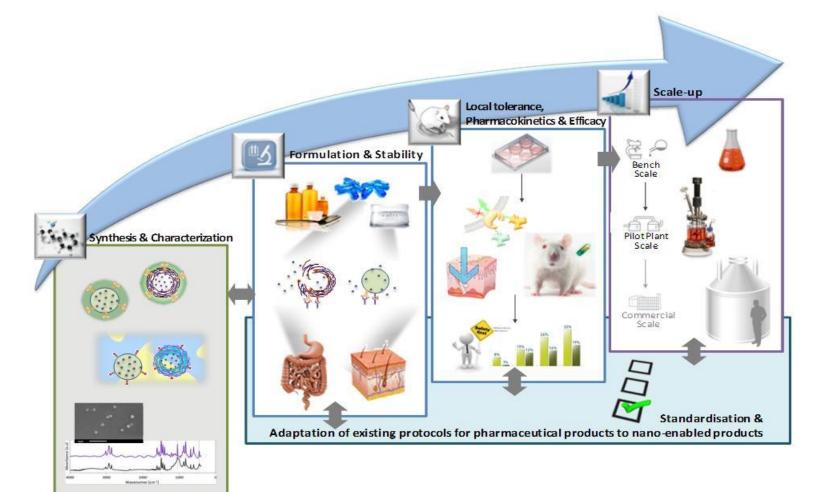



Fluorescent organic dyes could be either physically entrapped in the polymer interior during the preparation of NPs or covalently bound to the polymer chain



The strongly enhanced surface plasmon resonance of Au NPs optical frequencies makes them excellent scatterers and absorbers of visible light






They act as good contrast agents in MRI, enhancing the contrast between different tissues present by inducing a darker area (negative contrast).



Complete development of nanosystems

## Nanomedicine: Complete development of nanosystems

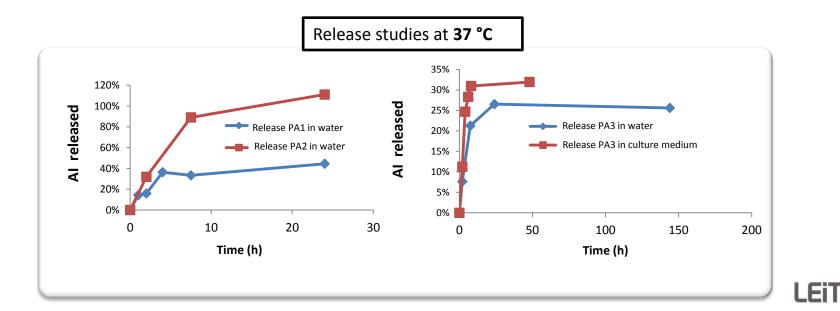






Other services: Formulation & Stability

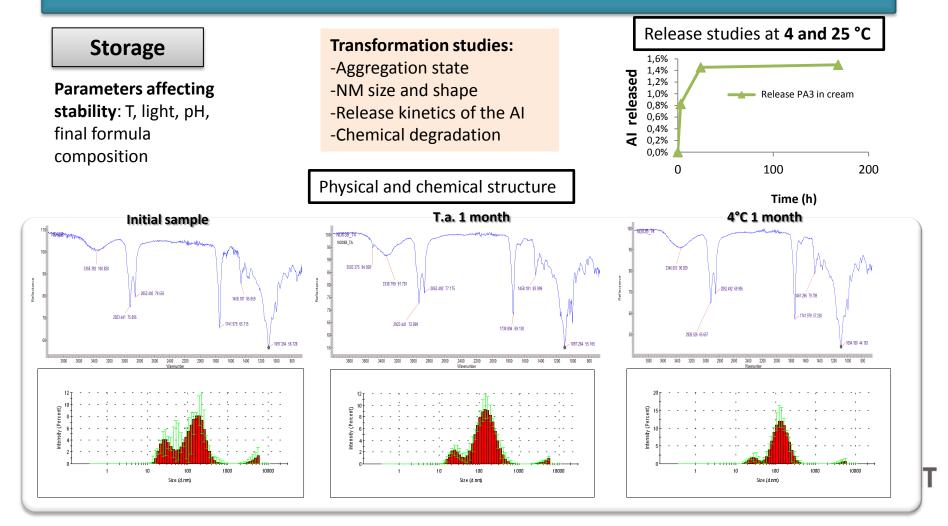



# Formulation & Stability

## Release and stability in final application and storage

### **Final application**

#### **Transformation studies:**


- -Aggregation state
- -NM size and shape
- -Release kinetics of the AI
- -Chemical degradation





# Formulation & Stability

## Release and stability in final application and storage





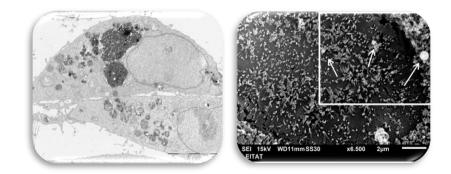


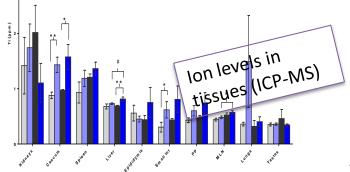
Local tolerance, Pharmacokinetics & Efficacy



## Nanotoxicology

# In-vitro toxicity


- Viability, proliferation, apoptosis
- Oxidative stress
- Inflammatory responses
- Phagocytic activity
- Phototoxicity
- Genotoxicity/Photogenotoxicity
- Membrane integrity


# In-vitro biokinetics

- Cell uptake and intracellular trafficking
- Intestinal barrier permeability
- ICP-MS, confocal microscopy, fluorescent microscopy, TEM, SEM.

# In-vivo toxicity / biokinetics

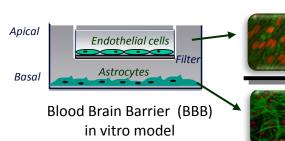
- Animal models: Rats and mice
- Administration Routes: Oral, dermal, parenteral
- OECD-like evaluations + Nanospecific focus







## **Nanotox and Efficacy**


## ADME

### **Metabolism and Tox**

- Hepatotoxicity
- **Stability**
- Clearance
- Metabolic profiling
- **Enzyme mapping**
- Panel Screening
- **Bio-analytics**



#### Human Hepatocytes



#### **Absorption**

- Intestinal
- Kidney
- Brain barriers
- Gastric epithelium
- **Cell transport** •

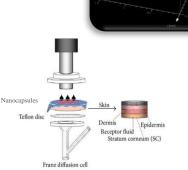
In vitro intestinal models

# **Skin biology and topical Nc**

### Safety

- Skin permeation
- Percutaneous absorption
- In vitro skin irritation
- In vitro ocular irritation
- Skin sensitisation
- Skin inmuno and neuro inflammatory responses
- Skin disorders models




- Anti-aging and vitalizing
- Anti-oxidant
- Anti-inflammatory
- Firmess and elasticity
- Moisturizing
- Skin and DNA repair/protection
- Photoprotection



samples



Skin explant culture 35







## **Other Capacities - RegMed**

Stem cells Biology
Primary cell cultures from human or animal models
Isolation and characterization of stem cells

## <u>Cell Therapy</u>

•Stem cell transplantation *in vivo*. Advanced surgical techniques or ultrasoundguided cell implantation.

•Small (mice, rat) and large (rabbit, pig, sheep) animal models

## Advanced surgical techniques in experimental in vivo models

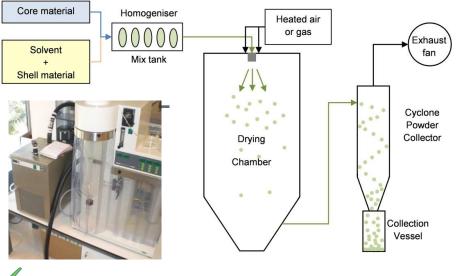
- •Skeletal muscle injuries *in vivo* models.
- •Tendon injuries (Achilles and patellar) in vivo models
- •Surgically-induced congenital malformations. Myelomeningocele or diaphragmatic hernia in fetuses in large animal models.



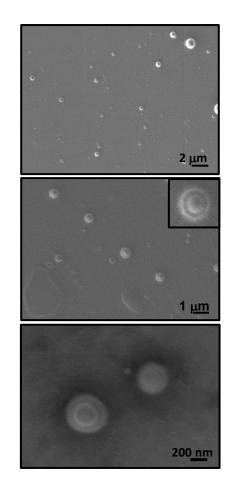




## Introduction




Scale-up




## Spray dryer tecnique

### pH-sensitive nanocapsules



Relatively uniform spherical particlesLarge production (up to Kg)Continuous operation and automatic controlSample purification



38

LEITET



#### Leitat

Acondicionamiento Tarrasense Tel. (+34) 93 788 23 00 Fax (+34) 93 789 16 06

## www.leitat.org

Terrassa C. de la Innovació, 2 08225 Terrassa (Barcelona)

Barcelona Parc Científic de Barcelona C. Baldiri Reixach, 15-21 08028 Barcelona

#### Igualada IG-NOVA Technoespai Av. Barcelona, 105 D-5 08700 Igualada





Ministerio de Ciencia e Impeación



# Thank you for your attention!!

1



Izabel Alfany, PhD – ialfany@leitat.org International Project Manager